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ORBIT: Application to SNS ﬂgSNS
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« ORBIT incorporates realistic physics and engineering
assumptions to allow the investigation of detailed physics and
design issues in high intensity rings.

* In this presentation | will summarize a number of ongoing SNS
ring studies using ORBIT:

— Postponement of HEBT RF cavities until after CD-4 (Holmes,
Henderson)

— Effect and correction of ring magnet errors (Bunch, Holmes,
Cousineau).

— Providing insight for ring applications (Bunch, Holmes, Plum)

— Inclusion of injection chicane lattice (Holmes, Henderson,
Wang).

— Painting self consistent uniform elliptical beams (Danilov,
Cousineau, Henderson, Holmes).

— Initial electron cloud studies (Sato, Shishlo, Holmes).
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ORBIT : Assumptions for Studies | MSNS
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Dynamics
— Symplectic single particle tracking, including hard edge fringe fields.
— Collective effects including space charge and dominant ring impedances.
— Use 1 GeV proton beam unless specified.

SNS Ring Lattice

— Reference tunes Q, = 6.23, Q, = 6.20 and natural chromaticity unless stated
otherwise.

— Magnets organized into chosen families, including dipole and quadrupole
correctors.

— Magnet errors and correction as appropriate.
— 44 horizontal and vertical BPMs at correct locations.
— Detailed injection chicane when appropriate.
Lattice and Dynamics
— Injection painting and foil hits with proton/foil interactions.
— Dual harmonic longitudinal RF with four cavities at correct locations.
— Collimators and apertures for proton losses.
Diagnostics
— Profiles and moments.
— Emittances and tunes.
— Distributions and losses.
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CD-4 HEBT RF Cavity Postponement MSNS
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« As part of endgame plan, delay of the HEBT energy spreader and
corrector cavities until after CD-4 is under consideration.

« While this should present no problems for low intensity
operation, it is necessary to demonstrate that 1.0 MW operation
can be conducted using the CD-4 accelerator configuration.

 ORBIT studies were carried out to investigate 1 MW operation
without the HEBT RF cavities.

« The default ORBIT SNS injection routine includes the effects of
both the HEBT energy spreader and corrector cavities. We
studied the effects during accumulation in the ring of

— removing the energy spreader cavity only, which gives a
perfect linac beam, and

— removing both the energy spreader and corrector cavities,
which leaves linac energy jitter in the beam.

March 10-12, 2003

Accelerator Systems Division 4 Oak Ridge National Laboratory‘




CD-4 HEBT RF Cavity Removal & né NS
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CD-4 HEBT RF Cavity Removal | ﬂg NS
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Alignment and Field Errors in the Ring | MSNS
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« Comprehensive studies of ring magnet errors and their correction are
underway.

« We present here the results of some initial studies on the effect and
correction of dipole and quadrupole displacement, field strength errors,
and quadrupole roll errors.

 Displacement errors are horizontal or vertical misplacements of a
magnet without pitch, yaw, or roll. ORBIT contains models for these
latter effects, and they are now under study.

« Field strength errors are incorrect values of the field strengths. ORBIT
also contains models incorporating higher field harmonics, but those
are yet to be studied.

 In all studies, we consider both specified individual errors as well as
random sets of magnet errors applied throughout the ring.
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Errors Perturbing the Closed Orbit SNS
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 For errors that perturb the closed orbit, we focus on
orbit deflection and losses:

— Deflection:
= Closed orbit calculation

» “Standard pencil beam” with initial coordinates
at injection point placed on desired closed orbit

— Losses are studied for full 1.44 MW injection
scenario:

= 1.5*10"4 protons at 1 GeV

= Scrapers, collimators, and beam apertures
around the ring are included
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Correction of Errors

Perturbing the Closed Orbit AN
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« Carry out error correction for standard pencil beam by setting
dipole corrector strengths to minimize BPM signals:

— 44 horizontal, 44 vertical BPMs - with or without random BPM
uncertainties

* Truncated gaussian distribution: 0=0.5 mm, Max =1 mm
— 24 horizontal, 28 vertical dipole corrector strengths
— Least squares:

* Minimize sum of squares of BPM signals (beam dipole
moments)

» Use standard pencil beam

= Apply scheme to individual as well as to random sets of
magnet displacements.

« Calculate losses with full injection simulations for uncorrected
and corrected cases, with and without random BPM
uncertainties.
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Quadrupole Field Strength Errors

andCorrection /o
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 Quadrupole field strength errors alter the beta functions, dispersion, and tunes.

* For these errors, we focus on betatron phase advances and losses, with the loss
calculations as before.

«  We now consider family as well as random sets of errors:
— There are 6 main quadrupole families in the ring, each on its own power
supply.
— Random errors within families are at the 104 level, which we include, but
family errors in the percent range are dominant.

« Carry out error correction by setting quadrupole strengths, obeying family
current constraints, to match betatron phase advances calculated from BPM
signals:

— 44 horizontal, 44 vertical BPMs - with or without random BPM signal
uncertainties

= Gaussian distribution: 0=3.6°

— 6 main families and 16 additional trim quad families. So far, only using 6
main families.

— Least squares:
= Match horizontal and vertical betatron phase advances at BPMs.

= Apply scheme to individual as well as to random sets of magnet field
errors.

* Calculate losses with full simulations for uncorrected and corrected cases, with
and without random BPM uncertainties, as described above.
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Error Correction Results:

Orbit and Phase Correction SNS
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* Errors:

— We typically study errors of larger sizes than are actually anticipated
in SNS.

— Studied individual 1 mm displacements, 0.1% dipole field, and 2%
quadrupole field (by family) errors.

— Studied random sets of 0.25 mm displacements, 0.1% dipole field,
and 1.0% quadrupole field (by family) errors.

— All errors studied assuming perfect BPM signals and alternatively,
random BPM signal errors leading to 0.5 mm in dipole moment or
3.6° in phase.

« Correction:

— Orbit correction is good to ~ 1 mm assuming BPM uncertainties,
better with perfect BPM signals.

— Required dipole kicker strengths are < 0.5 mradians, well within
capabilities.

— Phase correction is comparable to the assumed BPM phase

uncertainty; for perfect BPM signals, tunes are accurate to within
3*10-4,
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Random Errors:

Losses With and Without Correction ILSNS
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Results: Losses With and Without

Orbit and Phase Correction _ SNS
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Single Turn Injection:

Energy [GeV]
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Single Turn Injection:

Longitudinal Phase Space at Different Times for Coasting Beam
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BPM Signals to Determine x-y Coupling:

From Dipole Kick of Accumulated Beam SNS
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Beam Moments With Coupling for Coasting Momoenergetic Bea
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Injection Chicane

We have begun detailed studies
of the effect of the injection
chicane.

So far, we have:
— Incorporated the chicane

lattice,
— Developed time-dependent
kicker nodes with

programmable kicks, and

— Tested these capabilities on
a standard injection case.

The next step will be to replace
the present simple models for
the chicane bends by realistic
chicane bend models based on
the measured fields. These
models are yet to be developed.
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Self Consistent Uniform Elliptical Beams
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« We have demonstrated (Danilov, et al, accepted by PRST-AB) that

— there are an infinite number of uniform density elliptical KV-like
beams that

— retain their uniformity and ellipticity under all linear transformations.

* Such distributions could provide advantages for SNS:

— Uniform density is desirable from the standpoint of target
requirements.

— Uniform distributions have lower space charge tune shifts.

«  We have demonstrated a painting scheme to create such a beam in SNS.
The scheme requires painting in x” and y" as well as in x and vy.
Specifically, it is required

— to use nearly equal horizontal and vertical betatron tunes,
— to paint with linearly increasing (in time) emittances ¢, =¢ = ¢ * t/t,,
— to paint with 90° phase difference between the x-x" and y-y” planes.
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Self Consistent Uniform Round Beams NS
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ORBIT E-Cloud Model Development 2 ﬂé NS
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Rationale: Study effect of electron cloud on dynamics of proton beam.

Present status:
The ORBIT E-Cloud Module is a stand-alone collection of C++ classes. It uses
files of proton bunch particle coordinates generated by ORBIT.

Simulation model includes:

* The 3D potential and density of the proton bunch.

 The 6D coordinates of the electrons in the E-cloud 3D and its potential and
density.

* Initial electron generation induced by protons grazing the vacuum chamber.

* Initial electron generation induced by residual gas ionization.

* A secondary electron emission model. This model is essentially a simplified
model of M. Pivi and M. Furman.

* The ability to include external magnetic and electrostatic fields.

Ongoing and Future Development:

* Improvement and benchmarking of the secondary electron emission model.
* Merging the original ORBIT code and the ORBIT E-Cloud Module.

» Apply electron cloud effects to proton beam.
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ORBIT E-Cloud Module Benchmark ~ IVZ SNS

Simulated electron density
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Conclusions _ ~ !Z‘ NS
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« The ORBIT Code, which was developed to perform realistic
simulations of high intensity rings, and SNS in particular,
is now being applied to a wide range of SNS ring issues.

 These applications require the continuing development of
new models and code diagnostics

— To increase the physics capabilities of ORBIT and

— To align ORBIT more closely with actual accelerator
applications.

« The results of these studies provide insight into the
physics and the assurance to guide decisions.
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